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ABSTRACT

A simple model is presented which is capable of describing the detailed

space-time evolution of the interaction of long wavelength electromagnetic

radiation with an unmagnetized plasma having a nonuniform density profile.

The model consists of describing the electric field via the nonlinear

Schrodinger equation and the density changes through the ion-acoustic wave

equation with the ponderomotive force effects included self-consistently. In

the linear regime , this formulation explains the time evolution of the mode-

conversion process that leads to the excitation of a short wavelength Langmuir

wave in the neighborhood of the resonance layer where the frequency of the

external radiation matches the local value of the electron plasma frequency .

In the nonlinear regime, the model predicts the generation of density cavities

and the associated spatial localization of the electric field. These features

are in good agreement with the experimental results of Kim, Wong, and Stenzel.

In addition, the model predicts a variety of new interesting phenomena such

as the excitation of ion-acoustic oscillations and nonlinear relaxation

oscillations which are amenable to experimental observation.
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I. INTRODUCTION

The interaction of intense electromagnetic radiation with plasmas is

a subject of considerable interest because its study merges basic physics

processes with a wealth of potential applications which may impact the

development of future technologies . The basic physi cs aspects of this

interaction are intimately connected with the behavior of strong plasma

turbulence, i.e., that state of plasmas in which the zero-order properties of

the medium (e.g., density, temperature , mean flow velocity) are modified to

such a large extent that its description in terms of high-order perturbation

theories based on the linear collective properties, are inapplicable.

The practical aspect of the interaction of intense electromagnetic

radiation with plasmas is connected principally wi th its role as a method

for increasing the plasma temperature . At the present time the two major

applications of this role pertain to the RF heating of magnetically confined

plasmas and to the laser-pellet fusion concept.

Another application, not necessarily technologically oriented, of the

study of the interaction of intense radiation with plasmas pertains to the

interpretation of the spontaneous radiation observed in space physics

investigations. A better understanding of the basic nonlinear processes that

play a role in this interaction may he lp to uncover the behavior of remote

events which govern the evolution of naturally occurring plasmas.

The present investigation isolates a specific nonlinear process

encountered in the interaction of intense radiation with a nonuniform plasma .

Namely, the nonlinear modification of the density profile produced by the

ponderosotive force associated with the high frequency electric fields in the

plasma. Of course, other interesting and important effects take place in this

interaction (e.g., plasma heating, enhanced transport, spontaneous magnetic
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Equations (8) and (13) constitute a pair of coupled partial differential

equations in which the effects of plasma nonuniformity , external pumping, and

nonlinear generation of density fluctuations are contained. It is useful in

these equations to introduce the following nonuniform medium scaling

Z — (k~L)~~
’3 (x/L) , T (k,~L) ’2”3 (~tf2)

A — (k,~L)
”2”3 (E/E ) ~~~~~~~ (14)

and for generality a collisional damping rate v is introduced which scales as

r — (kDL)
2”3 (v/w) . (15)

Using the scaled variables Eq. (8) takes the form

r 2/3~~L
1

z — i r + ( k .0L) —
~~~ A = l  (16)

L. P.J

and Eq. (13) becomes

2 a2 ~~L ~2 
~L (kDL)

4”3 E 2 
~2 2V — — — — — — I A  (17)2 n 2 n 4nn T 2

3t p 3Z p p 3Z
with

V2 - (k~LY
2
~~ (M/m) . (18)

From Eqs. (16) and (17) it becomes evident that the degree of nonlinearity

in this problem is measured by the lumped parameter

p — (k DL) 2 (E
0
2/47rn~T) , (19)

and, accordingly, the scaled density fluctuations N which produce a signif icant

effect in the evolution of the system are given by

N — (k,~L) 4’13 (E 2 /4ii n T ) ’4 (n.b/n) . (20)



-10-~~~~~~~~~~~~

With these variables the mathematical representation of the model is contained
in the pair of equations

(21)

2 2 2

(22)az az
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To obtain a better physical insight into the behavior of the system

predicted from Eqs.(21) and (22) let us concentrate first on the purely linear

response. For small amplitude pumps (i.e., p<<l) the behavior of the system

is determined by the linear equation

3 32
i~~-A+ .A-(z-ir)A l (23)

Hence, in a plasma where collisional effects are negligible the early time

evolution of the electric field is approximately determined by

i.~ - A-zA~l (24)

thus showing that initially the pump field drives a collection of uncoupled

local oscillators. In particular, the oscillator at z=O is driven at exact

resonance, hence its amplitude is expected to grow linearly in time.

The second spatial derivative appearing in Eq.(23) arises due to the

thermal motion of the electrons, and is found to play a crucial role in the

physics of the problem. This term introduces a coupling between the independent

local oscillators driven by the pump, thus producing a net convection of the

electric field energy away from the resonance point in the direction of

decreasing plasma density. As a consequence of this convection, the amplitude

of the electric field does not grow without bound at z=0. Instead, it reaches

a steady-state level determined by the group velocity of the Langmuir wave

excited by the effective transmitter consisting of a layer of local oscillators

in the neighborhood of the resonant point. The order of magnitude of this

steady-state amplitude is automatically contained in the the scaling presented

in Eq.(14), namely

ER(kDL)
2”3EOA(z,r) (25)

and where the magnitude of A is of order unity, as is shown in the following .
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In the linear regime the steady-state behavior of the system is

determined from

d2
(26)

whose general solution has the form

A=aA1(~)+b8~(~
)_1TG

1(~) (27)

where ~ - z-ir, and A
~
, and B. are the well-known Airy functions defined

in Ref.(7). In Eq.(27) a and b are constants to be determined, and is

the inhomogeneous solution of Eq.(26) given by

G1(F)= 
.
~~
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (28)

whose asymptotic behavior is

1
for Re ~)>l

(29)
_ 1/ 2 _ 1/t . 2 3/2 ~

~ cos(~~ + 
~~
-) for Re ~<<-l

Since

B1~~~~
2
~~~”~exp(~~

3”2) (30)

for Re ~>>l , this implies that b=o in Eq.(27). Furthermore, since in the

region Re ~<<1 (i.e., down the density gradient)

~~~~~~~~~~~~~~~~~~~~~~ ~~
-) (31)

the outgoing-wave boundary condition requires that a-itt , thus yielding

the solution

(32)

which represents the steady-state pattern of the linear mode-conversion

process, whose time evolution is determined by Eq.(23) and is discussed in

Sec. IV.
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Turning our attention to the nonlinear response of the system, it is

apparent that in general one must contend with two coupled partial differential

equations which must be solved self-consistently. However, a further simpli-

fication of the present model is obtained if in Eq.(23) one neglects the

effect of ion inertia, i.e., one drops the term V2(32N/3’r2). This procedure

is appropriate if V2ccl or if, locally, the group velocity of the high-frequency

field is small compared to the ion-acoustic speed. Hence, the results obtained

using such an oversimplification are most accurate in the neighborhood of the

cold plasma resonance, and especially in the region z>0 since there the electric

field is evanescent. Accordingly, the results obtained using this approximation

are not expected to be accurate for zc<-l , since in this region the group

velocity of the excited Langinuir wave increases as it propagates down the

density gradient. As in shown in Sec. IV , D., when this approximation is lifted

the gross behavior of the system remains essentially unchanged. ~f course, in

the more realistic model one uncovers additional features associated with the

excitation of ion-acoustic oscillations.

Proceeding to implement the simplification previously mentioned transforms

Eq.(22) into

3 2 3 2
~~j T tA t 2 (33)

which yields the static ponderomotive force change in density N - 1A 12 . With

this result Eq.(2l) becomes

i’~~A+ }~TA_ t z_ ir_p IA I2)A= l (34)

which is the driven nonlinear Schrodinger equation in a nonuniform plasma,

considered previously by the present authors.

Eq.(34) is the nonlinear counterpart of Eq.(23), hence it describes the

process of nonlinear mode-conversion whereby the pump field initially mode-

converts into a Langauir wave near the resonance point, and in this process
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it alters the density profile in a self—consistent manner. Clearly if p << 1,

* but non—zero, the effect caused by the nonlinearity is rather weak, hence it

can be described by perturbation theory.

The object of such a perturbation theory is to describe the distortion of

the linear pattern given by Eq. (32). The steady—state perturbation procedure

can be formulated by considering the equation

2
— — p I A I 2 A (35)

in which the right—hand side is treated as a small quantity. Therefore, it

is useful to express A in terms of the nonlinear integral equation

A(~ ) — W (~) + ~Tp A1(~) J dy IA (y)1
2 A(y) B~(y)

— B~(~) J dy IA (y)1
2 A(y) Ai(y) (36)

where W(~) represents the linear solution given by Eq. (32), and

B~(~) — Bi(~
) + iA~(~) (37)

describes the appropriate outgoing wave weight function.

The representation provided by Eq. (36) provides a natural expansion technique

which is useful for small values of p. The iterative procedure suggested by

Eq. (36) consists of generating a sequence of approximations that use the

previous value of A to evaluate the integrals on the right—hand side of Eq. (36);

the starting approximation being A°(~) — W(~). We have investigated this

iterative scheme and have found that it converges rapidly for values of p < 0.5.

The physical reason behind the mathematical convergence is that at these low

levels of nonlinearity the profile changes consist mainly of a slight reduction

in the gradient scale—length, hence the wavefunctions which solve the problem

are not topologically different from the Airy—type solution given by Eq. (32).

However, for values of p > 0.8 it is found that the iteration
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procedure does not converge. The physical reason behind such a behavior is

that at this larger level of nonlinearity density cavities or pockets begin

to appear in the profile, hence the corresponding wavefunctions are closer to

soliton-like structures than to the prediction of Eq.(32). In the neighborhood

of p
~
O.S a variety of sophisticated techniques need to be used in order to

extract convergent solutions out of Eq. (36).

The nature and consequences of the weakly nonlinear effects that can be

extracted from perturbation theory are presented in Sec. IV, B., in which the

full time evolution of Eq.(34) is investigated numerically. The reason for

deferring such presentation is due to the fact that the solutions of the time

dependent problem are found to approach asymptotically the iterative steady-

state solutions obtained from Eq.(36).

Before proceeding to examine numerically the detailed properties of the

models defined by Eqs.(2l) and (22), and by Eq.(34), it is worthwhile to

discuss some important conceptual features contained in them.

It should be realized that in the present formulation it is implicitly

assumed that there exist external agents that continue to generate the linear

density profile described by Eq.(l). The nonlinear modification of the profile

produced by the ponderoniotive force through Eq.(22) is a local effect which is

assumed not to alter the external methods of plasma production. This

description is most appropriate for laboratory experiments operating under CW

conditions, such as those of Kim, Wong , and Stenzel, and of Wong and DiVergilio.

Effects such as changes in the profile due to the indirect modification of the

ambipolar potential, or of the bulk streaming velocity, as may be the case for

blow-off plasmas in laser-pellet experiments, are not included.

The present model does not include kinetic effects associated with

direct particle-field interactions. This restriction is appropriate for the
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description of the zero-order nonlinear evolution. However, due to the

fluid nature of the model, it is unable to deal with the interesting questions

pertaining to the formation of high energy tails in the electron velocity

distribution function, of ion acceleration, of magnetic field generation, as

well as the feedback of these effects on the generation of localized electric

fields. The investigation of such complicated features fall in the realm of

particle simulation codes8.

Finally, it should be noted that the generation of density cavities and

localized electric fields in a nonuniform plasma does not require the amplitude

of the electric to be very large. The quantity whose value determines the

threshold for this regime is the parameter P ( /Te)
2(E

~
/l2uTflpT)

~ 
which can

be quite large experimentally (of order 1 or larger) even for modest levels of E~.

With these features in mind we proceed to consider briefly the numerical

scheme used in investigating the model equations.
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III. NUMERICAL PROCEDURE

The numerical technique used to solve Eq. (21) consists of discretizing

the space and time variables in steps 1~z , and &r, respectively. One then

implements the time—averaged Crank—Nicholson procedure which yields the finite

difference equation

~~ (A~ -ii
) + 

2 (az) 2 (A~~1 - 2A~ + A~ -l~ 
+ 

2(~z) 
2 ~ j+l 

- + £~

— 
~~
. (c~A~ + ~~~~ — 1 (38)

where A~ refers to the present value of A at the j spatial grid point, and

to the corresponding value at the previous time step. The complex dielectric is

— Z~ + ~~ — ir~ (39)

and with an equivalent meaning for

If the values of 5. and are known, Eq. (38) provides a matrix

equation f or the unknown A~. The matrix equation can be solved in a quick and

efficient manner through the tn —diagonal scheme,9 thus resulting in the implicit

determination of the electric field amplitude at every time step .

To implement the tn —diagonal scheme requires a prior knowledge of ~~~ since

it appears explicitly in c~ . For the model defined by Eq. (34) , i.e., where

ion—inertia is neglected , the required N~ at the present time ~ is obtained

through the extrapolation

N~ (T) — — [2k
3
(r—At)1

2 
— IA~(t—2&r) I

2
~ . (40)

When dealing with the more general model defined by Eqs . (21) and (22) ,

is obtained by introducing an ion time step — t,~r/V — t~z that permits the

solution of Eq. (22) through the use of its characteristic mesh. To make the

t~~ time meshes coincide, a delay—tim. integer d is introduced , and the

following algorithm is used to update N1.



S

-18-

N
1
(t).N1+1(t—dAt)+N~~1(r—dAt )-N~(r- 2dir)+IAj+1(r-d frr) 

I2 —2IA~(t— d~t) 12

(41)

The boundary conditions imposed on N~ when Eq.(22) is implemented

consists simply of free propagation out of both ends of the finite plasma

slab retained in the computer.

To handle the boundary conditions associated with the solution of Eq.(38)

one uses a plasma slab whose width is large enough so that the important

phenomena occurring near the resonant layer (i.e., zz0) does not sample the

edges. Under such condition one updates the boundary values through the

equation

jF- A-eA” l (42)

which represents, physically, the cold plasma response. Eq.(42) is quite

appropriate for describing the behavior of the plasma for z’>l becw.ise the

Langmuir waves are evanescent there. However, the application of Eq.(42)

to the region z<cl in the presence of mode-conversion is not quite consistent

because Langmuir waves are continuously generated near z~0 and proceed to

propagate down the density gradient . In an actual experiment the mode-

converted waves experience strong Landau damping in the.region z<c-l because

their phase velocity decreases monotonically. However, in the present fluid

description there are no mechanisms which prevent the mode-converted waves

from reaching the boundary in the region zcc-l , hence one must implement a

numerical procedure which gives rise to a behavior consistent with the

boundary equation. A simple scheme which overcomes this difficulty consists

of introducing a damping coefficient r(z) whose strength increases as one

approaches the boundary. A typical choice used in the present investigation is

r ( z ) — r 0+r 1exp {-(z+20) 2/5} (43)
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- with r1~3-5, and 
p
0-0.2. The choice of the constant damping F0 used throughout

this investigation is consistent with the conditions of the experiment of Kim ,

Wong, and Stenzel.

Another difficulty encountered in implementing the numerical solution of

Eq.(38) via the ti-i-diagonal scheme is that for zc<-1 the wavelength of the

mode-converted wave decreases nionotonically. When this physical behavior is

translated to a finite mesh it can lead to spurious instabilities and reflections.

This nuisance can be eliminated without altering the interesting physics near

the resonance point by introducing a zero-order unperturbed profile which

flattens as one approaches the low density boundary. A typical profile used in

the present investigations is

n (z) -10 for -20~z~-l50 
— (44)

z+5 exp (-(z+lS)/5] for -15<z

which in conjunction with Eq.(43) provides a convenient way of modeling the

absorption typically encountered in the laboratory in the low density region of

the plasma.

Finally, it should be mentioned that the solution of Eqs.(2l) and (22) is

initialized with N-o, and through a sudden turn-on of the system.

In Sec. IV we proceed to discuss the linear and nonlinear results obtained

by implementing this scheme in the mathematical on-line system at the University

of California, Los Angeles.
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IV. RESULTS

A. Linear Behavior

The linear response (i.e., p—O) of the system being considered consists of

the mode-conversion process whereby the long wavelength radiation excites a

Langmuir wave near zaO; the steady-state solution being given by Eq.(32). To

obtain the time evolution of the events which lead to the formation of such

a steady-state pattern one needs to solve Eq.(23) numerically. We proceed next

to discuss the results of such a study.

In Fig. 1 we display the spatial dependence of 1A 12 for different times in

the early evolution of the system, 0.5<r<l.5. The slopping straight line

represents the quantity -Re e’ iz which corresponds to the scaled real part of

the dielectric, and thus to the scaled zero-order density profile. It is seen

in Fig. 1 that the initial response corresponds to the excitation of the cold

plasma resonance centered at z=0. It is found that the initial secular build-up

of 1A 12 is suitably described by the approximate Eq.(42), in which the wave

convection effects are neglected. The effect of convection is negligible at the

early stage because the spatial curvature of A is not of much significance,

since the external pump is spatially uniform. However, the purely cold plasma

behavior does not last long. As soon as a significant curvature of A develops,

the convection effects become important, as is shown in Fig. 2. This figure

disp lays the spatial dependence of J A I 2  over the interval 2.0<r<3.0, and

demonstrates that wave convection stops the secular growth of the electric field

and shifts the location of its peak toward the underdense side of the cold

plasma resonance (i.e., toward z<0). In addition, one observes that the

electric field pattern begins to spread down the density gradient and that

simultaneously interference oscillations in 1A 12 develop. These oscillations

arise due to the interference between the mode-converted wave and the external

pump, and constitute a characteristic feature which is inherently contained in

the steady-state solution given by ~q.(32).
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To verify that short wavelength oscillations are indeed excited by the

sequence of events shown in Figs. 1 and 2, it is convenient to display the

spatial dependence of the real and imaginary parts of A , as is done in Fig. 3

for -r—2.5. It is evident from this figure and Eq.(32) that

Re A-.- - irG.(z)

(45)

Im A÷ - ,rA.(z)

as time progresses.

To determine the nature of the mode converted oscillations it is

convenient to plot a phasor diagram of the type commonly used experimentally

to measure the direction of phase propagation. Such a plot is shown in Fig. 4,

where one displays the imaginary part of A versus its real part for a fixed

time t=2.75, and with spatial position as the parameter varying along the

curve. The direction of the arrows correspond to moving down the density

gradient. The fact that the curve in Fg. 4 rotates in the counterclockwise

direction (i.e., the direction of increasing phase angle) identifies the mode-

converted oscillations as forward waves, i.e., the energy and phase velocities

point in the same direction, as is appropriate for Langmuir waves.

Having uncovered the time evolution of the linear mode-conversion process

we proceed next to examine its nonlinear modification.
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B. Weakly Nonlinear Behavior

It is found that for values of p<0.l the nonlinear modification of

the density profile does not cause any significant changes in the mode-conversion

process illustrated in part A of this section. However, in the range O.1<p<0.8

it is possible to identify an intermediate regime in which the weak nonlinearity

causes an adiabatic spatial distortion in the pure Airy pattern given by Eq.(32).

The characteristic distortion observed in this regime, and obtained from

Eq.(34), is exhibited in Fig. 5, where we present the spatial dependence of

I A l2 for p~0.S (lower curve) and for p—0 (upper curve), at the same time -r=3.0.

The straight line in Fig. 5 corresponds to the unperturbed density profile , and

the slightly curved line below it is the nonlinear counterpart. It is clear

from the presentation of Fig. 5 that at this level of nonlinearity the distortion

of the profile is quite mild. It consists simply of a small shift of the

resonance point into the overdense region (i.e., z>0) accompanied by a slight

flattening of the density gradient. This modification causes an overall shift in

the ~A (2 pattern toward z=O, as well as a reduction in the peak amplitude.

As is mentioned in Sec. II, in this intermediate regime of pump amplitudes

the nonlinear distortion of the mode-conversion pattern can be handled by

perturbation theory, i.e., through the iterative solution of Eq.(36). A

characteristic result obtained by this procedure is shown in Fig. 6, where we

display the spatial dependence of 1A 12 for p.0.5 (lower curve) and for p.0

upper curve. Both curves are obtained for r—o and correspond to the physical

situation encountered as r-’~ . Fig. 6 demonstrates that the adiabatic distortion

seen in the time evolution, and shown in Fig. 5, is indeed reproduced by the

perturbation theory calculation.

The reasons for the differences seen between Figs. 5 and 6 in the region

zcc- l are: a) the curves shown in Fig. 5 correspond to r-3.0, hence the mode-
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converted waves have not had sufficient time to propagate down the density

gradient, and b) the curves in Fig. 5 are obtained from Eq.(34) with r=0.2,

hence their peak amplitude is reduced (relative to the 1=0 case) and their

pattern undergoes an enhanced spatial damping down the density gradient.

We proceed next to discuss the fully nonlinear behavior of the system

which can be reached by increasing the pump amplitude beyond the p.l.O level.
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C. Nonlinear Behavior Without Ion Inertia

The adiabatic distortion of the Airy-type pattern observed to occur for

p<O.8 is radically altered when the pump amplitude is increased beyond the

p.l.O level. In this fully nonlinear regime we have not found a suitable

convergent technique capable of yielding a self-consistent solution of the

steady-state nonlinear integral equation given by Eq.(36). In fact, the

time evolution obtained from the numerical solution of Eq.(34), and from the

system defined by Eqs.(21) and (22), indicates that such a steady-state may

not exist within the present description. The system simply runs continuously

through a variety of nonlinear states characterized by relaxation oscillations.

The reason for the strong modification of the linear mode-conversion

process at these larger amplitude levels is that localized density cavities

or pockets are generated in the plasma by the ponderomotive force. These

density cavities, cause a partial reflection of the mode-converted waves and

also it alters the efficiency of mode-conversion due to the local steepening

of the profile.

To illustrate the direct effect produced on the mode-conversion pattern by

the appearance of a localized density cavity, we consider the steady-state

equation

~~~~~~
- A-[z-N (z)]A=l (46)

with

N(z).{2.5 sech[4(z—l)’J}2 (47)

representing a narrow density cavity centered in the initially overdense region.

The effect of such a cavity is clearly visible in Fig. 7, where we display the

spatial dependence of A l2 . In Fig. 7 curve a) is obtained with N=0 , hence

representing the linear pattern, while curve b) is generated with N given by

Eq.(47). The density profile corresponding to Eq.(47) is represented by the

slopping line.
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It is evident from Fig. 7 that the creation of a cavity in the density

profile in the overdense side (i.e., z>O) gives rise to a strong localization

of the electric field. The spatial localization arises because the cavity

provides a potential well within which the Langmuir oscillations can be

partially trapped, i.e., they are prevented from convecting down the density

gradient. As the degree of trapping increases, so does the peak amplitude of

the localized field because its total energy content is determined by the

balance between the pumping by the external field and the convection by the

Langmuir oscillations. It is seen in Fig. 7 that although the cavity described

by Eq.(47) causes the localization of the electric field, it does not give rise

to complete trapping, as is made evident by the extended wing of the pattern

observed in the region z<O.

Although the results shown in Fig. 7 illustrate the basic process involved

in the generation of localized electric fields in a nonuniform plasma, it should

be realized that an important ingredient is missing in the calculation leading

to this figure. Namely, the shape, position, and depth of the density cavity

must be self-consistent with the IA !2 it generates. When this restriction is

imposed it is found that nonlinear patterns such as that illustrated in Fig . 7

last only for a finite time, but are generated in a repetitive manner, as is

shown later on.

In the remaining of this subsection we discuss the self-consistent time

evolution of the generation of localized electric fields, as obtained by

neglecting the effect of ion inertia in Eq.(22), i.e., we investigate the system

by solving Eq.(34) directly.

Fig. 8 displays a typical localized electric field and its self-consistent

density cavity obtained for p 3.O, r-O.2, at time r=l.75 . It is clear from

Fig. 8 that the self-consistent distortion of the profile moves the resonance
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layer (i.e., Re c’—O) deeper into the plasma, and creates a sharp density cavity

centered at the original location of the resonance. Unlike the simulated

conditions leading to Fig. 7, the self-consistent density cavity with ion-

inertia neglected is unable to create a situation such that Re € ‘ has two zero

crossings. As a consequence, the localized pattern seen in Fig. 8 does not

evolve into a steady-state feature because the Langmuir oscillations are able

to leak out of the density cavity and thus convect the energy down the

density gradient.

An example of the convection out of the localized density cavity initially

centered at z=O is shown in Fig. 9. This figure corresponds to the same

parameters used in Fig . 8, but shows the behavior at a later time r=2.8. It

is seen in Fig. 9 that a localized electric field moves down the density

gradient and drags a density cavity which prevents it from spreading into an

extended pattern. In Fig. 9 it is also observed that another localized field

is generated in the region z>0. The reason for the reappearance of this

feature is that the location where Re c ’=O moves into the plasma and the pump

field is still turned-on, hence the cold plasma resonance is excited anew, it

evolves into a localized field and thus repeats the cycle.

A summary of the three basic stages observed in the nonlinear evolution

is shown in Fig . 10, where we display the spatial dependence of A !2 and of

the scaled density profile for various times. The early stage, indicated by

r-l.4 in Fig. 10, consists simply of the secular build-up of the linear cold

plasma resonance centered initially at z=O. Due to the ponderomotive force,

the excitation of the cold plasma resonance generates a density cavity which

prevents the linear mode-conversion process from developing, hence giving rise

to the second stage represented in Fig. 10 at t—l.7. During this second stage

a localized electric field appears whose width decreases with increasing
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amplitude , thus resembling a Langmuir-wave soliton . Since in the absence of

ion inertia no density increases or bumps can be generated, this implies that

the localized structure generated during the second stage is not confined on

the low density side. Accordingly, the localized field begins to propagate

down the density gradient. The third stage in the nonlinear evolution is

represented by r 2.2 in Fig. 10. It consists of the propagation of a

localized pulse down the density gradient, accompanied by the simultaneous

build-up of the cold plasma resonance at a new location deeper into the plasma.

The characteristic events depicted in Fig. 10, although obtained for a

zero-order profile which is chosen as a linear function of position, are

independent of this particular choice. To verify the generality of the non-

linear behavior seen in Fig. 10 we have investigated a variety of zero-order

profiles. An interesting unperturbed density we have considered is

n (z)
z+exp[-(z+5)2/5J-exp [-(z-5)2/5J (48)

p

which is non-monotonic and contains a zero-order cavity as well as a bump.

A characteristic result obtained for p.6.0, r=0.2 is shown in Fig. 11. The

continuous slopping curve corresponds to the unperturbed profile while the

dashed curve corresponds to the nonlinearly modified profile. It is seen in

Fig. 11 that significant structures develop in two spatially separated

regions in the neighborhood of Re c ’=O. The localized field on the low density

side consists only of a single peak because there is a finite wave leakage down

the density gradient. The structure located deeper into th. plasma consists

of several neighboring localized peaks because the existence of a zero-order

density cavity stops the wave-leakage. As a consequence of the development of

localized electric fields on both sides of the initial density bump, the

unperturbed profile evolves in time into a plasma “~ith two sharp gradients

connected by a flat portion within which a strong level of spiky turbulence

exists.
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We proceed next to investigat e the generation of density cavities and

localized electric fields with ion inertia included.
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D. Nonlinear Behavior with Ion Inertia

The effect of ion inertia on the process of generating density cavities

and localized electric fields appears in Eqs.(2l) and (22) through the parameter

V=(M/m) 
~
‘2(kDLY

’/3. In practice this quantity can be quite large depending on

the specific parameters of the experiment, e.g., V 4 for a hydrogen plasma

with kDL~
lO3. However, from the numerical standpoint it is not convenient or

interesting to consider large values of V because a significant amount of com-

puter time is wasted in following phenomena which are nearly constant in time.

For this reason the results to be presented have been obtained with a value of

V=2.O and using a delay between the ion and electron time meshes of d=4, as

indicated in the numerical scheme of Eq. (41). The usage of such a low value of

V can be interpreted as an exact treatment of a physical situation dealing with

an extremely gentle density gradient, or alternatively, as viewing a realistic

problem with a camera which has been artificially speeded-up.

Fig. 12 displays the characteristic time evolution of the system described

by Eqs.(2l) and (22) over the intervals -20<zcS and 3.0<rcS.O for p.3.0, and

r=O.2. This figure is to be compared with its counterpart, Fig. 10, which is

generated from Eq.(34) for the same p and r.

The first difference which becomes apparent in Fig. 12 is the slower

evolution of the nonlinearity when ion inertia is included, as is expected.

The early appearance of the nonlinearity observed in Fig. 10 at r=l.7 becomes

visible in Fig. 12 at -r—3.O. Due to the later appearance of the nonlinearity,

the r=3.O pattern in Fig. 12 shows clear evidence of the prior development of

linear mode-conversion occurring in the essentially linear stage for r<3.0.

Another expected difference which shows up clearly in Fig. 12 is that the

pondercmotive force now generates density bumps as well as density cavities.

This additional feature implies that as the initial density cavity centered

at z—0 develops, it kicks the excess density up and down the density gradient.
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As a consequence of this density rearrangement it is now possible to generate

spatial regions which are bounded by two zeroes of Re c ’, as is seen at t=4.O.

The momentary generation of such regions causes the electric field to be more

localized, as is seen in the transition from t 4.5 to 5.0.

An interesting effect which is amenable to direct experimental verification

consists of the fission of large individual density cavities into smaller sub-

cavities, as is seen at r=4.5 and 5.0. This splitting is associated with the

fact that the temporary barrier created by the density bump can not hold the

RF energy on the low density side of the gradient for a long time. Hence, after

a certain time the RF energy begins to leak out Ofl this side leaving behind a

smaller cavity.

An additional new feature appearing in Fig. 12 ~s the clear increase in

the steepness of the profile in the neighborhood of z=0. This behavior is

associated with the fact that when ion inertia is included in the process, the

shape of the nonlinear density cavity is no longer the mirror image of )A)2,

as is seen at r=5.O in Fig. 12.

An interesting type of measurement which is quite often used in the

laboratory consists of sampling the properties of a process in time at a fixed

spatial location, as can be done with a stationary probe or with a sampling

electron beam. This type of information is also available in the solution of

Eqs.(21) and (22) and provides a slightly different view of the nonlinear

evolution which is amenable to experimental verification.

Fig. 13 displays the time evolution of the fluctuation in density at

z=-2.l , which corresponds to a point located on the underdense side of the

resonant layer. The parameters used correspond to those of Fig. 12. It is

seen in Fig. 13 that the local density remains unperturbed up to r-l.71, and

thereafter it begins to decrease steadily up to a minimum level. This process

- - - -
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corresponds to the formation of the density cavity initially centered at z.O.

After t— 3 .98 the magnitude of the density cavity decreases and significant

density fluctuations of the ion-acoustic typ. are excited .

The corresponding behavior on the overdenso side of the resonant layer

is shown in Fig . 14 for z~3.O. It is seen in this figure that the local density

remains essentially unperturbed up to a time r—1.14 beyond which it proceeds to

increase steadily. This increase in density is associated with the digging of

a density hole around z—0. Later in time, at r—3.42, it is observed that the

monotonic increase in density exhibits a modulation of the ion-acoustic type

whose amplitude increases in time .

The combined picture which emerges from Figs. 13 and 14 is that the

ponderomotive force digs a hole in the underdense side of the resonant layer,

and in doing so it throws the excess initial density away from the z~0 point.

Since in this process the plasma is shaken, it responds to this perturbation

by generating ion-acoustic fluctuations that propagate up and down the density

gradient.

Another quantity which is of experimental interest is the local time

evolution of the electric field . A display of such behavior is shown in Fig. 15

for a point z~-1.l, located on the underdense side for the conditions corres-

ponding to Figs. 12, 13, and 14. Fig. 15 indicates that in th, interval r<l.71

I A ( 2  builds-up in a secular manner , as expected due to the excitation of the

cold plasma resonance. Around v.1.71 the secular growth stops due to the

appearance of the mode-conversion process which shifts the pattern down the

density gradient. After saturation due to wave convection the local amplitude

proceeds to decrease in the interval 2.28<r<3.42 due to the localization of

the electric field at a point located deeper into the plasma. As has been

seen on several occasions in this study, the cold plasma resonance continues
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to be excited, thus the cycle repeats. As is seen in Fig. 15, this cycle

manifests itself locally in the form of deep relaxation oscillations which

are amenable to experimental verification.

The counterpart of the relaxation oscillations exhibited in Fig. 15 is

shown in Fig. 16 for a fixed location on the overdense side z=l.. On this

side of the resonance no relaxation oscillations are observed because no

density cavities are regenerated in this region. Fig. 16 indicates that at

this point the cold plasma resonance builds-up in a secular manner up to

r’l.l4, and it saturates due to the wave convection down the density gradient.

However, the local electric field amplitude does not settle down to a steady

level after this event. Instead, it decreases monotonically. This enhanced

decrease is a nonlinear effect that arises due to the fact that the density

increases monotonically in time in this region, as is demonstrated in Fig. 14.

Accordingly, this local position becomes increasingly overdense and leads to

the steady decrease in the local field amplitude because of the corresponding

decrease in the evanescence length.
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V. CONCLUSIONS

This investigation has shown that a simple model based on the nonlinear

Schrodinger equation and the ion-acoustic wave equation is capable of describing

the detailed space-time evolution of the generation of density cavities and

localized electric fields due to the interaction of long wavelength radiation

with a nonuniform plasma.

The formation of such nQnlinear structures can play an important role in

the absorption of electromagnetic radiation in a nonuniform plasma because the

localized fields can act as powerful electron accelerators that generate

supratherinal tails10 in the electron velocity distribution function. Also , in

the process of forming the density cavities bursts of fast ions can be created.

Absorption mechanisms of this type have been observed in computer simulations8

as well as in. laboratory experiments~
’.

The present formulation predicts that one must contend with this type of

nonlinear phenomena for external power levels such that the nonlinear parameter

PZ(f
~e
)2(1 121fl1pT)>1 Below this power level, the present study shows that

the physics of the problem is dominated by the process of linear mode-conversion.

Accordingly, in the low power level regime the dominant absorption mechanism

consists of linear Landau damping of the mode-converted waves as they propagate

down the density gradient.

The present time dependent formulation has permitted the description of

the time evolution of the linear mode-conversion process. This process has

been previously”2 investigated in considerable detail, but only in its steady-

state form. Therefore, the present results expand and compliment the previous

investigations by showing how linear mode-conversion takes place, and that

asymptotically in time the spatial pattern associated with this process

approaches the Airy-type waveforms. The present study goes beyond the strictly
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linear regime by showing that for mild nonlinearity the Airy-type of pattern

is adiabatically distorted, and further that such distortion attains a steady-

state which is fully describable by perturbation theory for external power

levels such that p<O.8.

The inclusion of ion inertia effects in the present study compliments a

previous investigation4 in which such an effect was neglected for the sake of

sinipli’city. The present results show that the inclusion of ion inertia does

not alter the important features found in the earlier study. Density cavities

and localized electric fields are indeed generated, but the details of the

process are slightly different. Additional new phenomena, such as the

excitation of oscillations of the ion-acoustic type after the formation of a

density cavity, are uncovered.

The present model predicts the existence of interesting relaxation

oscillations in the underdense side of the resonance layer, and an initial

build-up of the electric field on the overdense side, which is followed by a

long term enhanced decay. These feature.s can be traced to the redistribution

of density up and down the gradient and are amenable to experimental study.

Under well controlled laboratory conditions these features can be detected

with a small probe or with a sampling electron beam. In a laser-plasma

experiment these effects may manifest in the form of modulation of the light

absorption, or equivalently, in the appearance of sidebands in the light

reflected from the resonant layer.

In su~~ary, the present model has proven its usefulness by the ability to

encompass a wide variety of physical phenomena of great interest under a

simple mathematical structure. Whether or not this type of approach can be

extended to describe more complicated phenomena hinges on the ability to

incorporate the effect of single particle acceleration into the nonlinear

Schrodinger equation, a topic which deserves more attention.
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FI GURE CAPTI ONS

FIG. 1 Early excitation of the cold plasma resonance observed over the

interval 0.S<t<1.5. Slopping line represents Re (-€. ’), or

equivalently , the scaled density profile.

FIG . 2 Development of thermal convection in the mode-conversion process

over the interval 2.0<r<3.0. Slopping line represents Re(-c ’), or

equivalently, the scaled density profile.

FIG. 3 Spatial dependence of the real and imaginary parts of A at T 2.5.

Slopping line represents Re(-c ’), or equivalently, the scaled

density profile.

FIG. 4 Phasor plot of A at r=2.75. Counterclockwise winding shows mode-

converted wave is of the forward type.

FIG. 5 Typical adiabatic distortion obtained from Eq.(34) in the weakly

nonlinear regime at r=3.0, ~=0.2, and for p~
O (linear) and p=O.S

(nonlinear). Slopping lines represent Re(-c ’), or equivalently,

the scaled density profiles.

FIG . 6 Steady-state adiabatic distortion obtained from perturbation

theory based on Eq.(36) for r=o, and p=O (linear), p=O.S (nonlinear).

Slopping lines represent Re(-c ’), or equivalently, the scaled

density profiles. To be compared with Fig. 5.

FIG. 7 Steady-state linear mode-conversion pattern for: a)linear density

profi le, b) linear density profile with a density cavity, as shown

by the slopping line. Profile is not self-consistent with electric

field.

FIG. 8 Typical self-consistent electric field and associated density

cavity obtained from Eq.(34) at ~~l.75 for p~3.O, r~0.2. To be

compared with Fig. 7.
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FIG . 9 Convection of a localized electric field down the density

gradient and regeneration of a new resonance obtained from

Eq.(34) at r—2.8, p—3.O, r~o.2.

FIG. 10 Three different stages of evolution observed in the nonlinear

regime: a) cold plasma resonance t=1.4, b) spatial localization

r=1.7, and c) convection and regeneration Tu2.2.

FIG . 11 Multiple generation of localized electric fields in a nonmonotonic

zero order profile for p~6.O, r=0.2. Continuous slopping curve

refers to the zero order profile. Dashed curve is the self-

consistent nonlinear profile.

FIG. 12 Generation of localized electric fields and density cavities with

ion inertia included over the interval 3.0<t<5.0 for p=3 .O ,

~~~~~ V=2.O.

FIG. 13 Time evolution of the density fluctuations observed at the fixed

spatial location z=-2.l , on the initially underdense side.

FIG. 14 Time evolution of the density fluctuations observed at the fixed

spatial location z=3.0, on the initially overdense side.

FIG. 15 Time evolution of the electric field amplitude at the fixed spatial

location z~-l.l, on the initially underdense side.

FIG. 16 Time evolution of the electric field amplitude at the fixed spatial

location z=l.3, on the initially overdense side.
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